Contextuality-by-Default 2.0: Systems with Binary Random Variables

نویسندگان

  • Ehtibar N. Dzhafarov
  • Janne V. Kujala
چکیده

The paper outlines a new development in the Contextualityby-Default theory as applied to finite systems of binary random variables. The logic and principles of the original theory remain unchanged, but the definition of contextuality of a system of random variables is now based on multimaximal rather than maximal couplings of the variables that measure the same property in different contexts: a system is considered noncontextual if these multimaximal couplings are compatible with the distributions of the random variables sharing contexts. A multimaximal coupling is one that is a maximal coupling of any subset (equivalently, of any pair) of the random variables being coupled. Arguments are presented for why this modified theory is a superior generalization of the traditional understanding of contextuality in quantum mechanics. The modified theory coincides with the previous version in the important case of cyclic systems, which include the systems whose contextuality was most intensively studied in quantum physics and behavioral sciences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contextuality-by-Default: A Brief Overview of Ideas, Concepts, and Terminology

This paper is a brief overview of the concepts involved in measuring the degree of contextuality and detecting contextuality in systems of binary measurements of a finite number of objects. We discuss and clarify the main concepts and terminology of the theory called “contextuality-by-default,” and then discuss generalizations of the theory to arbitrary systems of arbitrary random variables.

متن کامل

Advanced Analysis of Quantum Contextuality in a Psychophysical Double-Detection Experiment

The results of behavioral experiments typically exhibit inconsistent connectedness, i.e., they violate the condition known as “no-signaling,” “no-disturbance,” or “marginal selectivity.” This prevents one from evaluating these experiments in terms of quantum contextuality if the latter understood traditionally (as, e.g., in the Kochen-Specker theorem or Bell-type inequalities). The Contextualit...

متن کامل

Proof of a Conjecture on Contextuality in Cyclic Systems with Binary Variables

We present a proof for a conjecture previously formulated by Dzhafarov, Kujala, and Larsson (Foundations of Physics, in press, arXiv:1411.2244). The conjecture specifies a measure for the degree of contextuality and a criterion (necessary and sufficient condition) for contextuality in a broad class of quantum systems. This class includes Leggett-Garg, EPR/Bell, and Klyachko-Can-Binicioglu-Shumo...

متن کامل

Measuring Observable Quantum Contextuality

Contextuality is a central property in comparative analysis of classical, quantum, and supercorrelated systems. We examine and compare two well-motivated approaches to contextuality. One approach (“contextuality-by-default”) is based on the idea that one and the same physical property measured under different conditions (contexts) is represented by different random variables. The other approach...

متن کامل

Exploration of Contextuality in a Psychophysical Double-Detection Experiment

The Contextuality-by-Default (CbD) theory allows one to separate contextuality from context-dependent errors and violations of selective influences (aka “no-signaling” or “no-disturbance” principles). This makes the theory especially applicable to behavioral systems, where violations of selective influences are ubiquitous. For cyclic systems with binary random variables, CbD provides necessary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016